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fast application of integral operators in Lippmann—Schwinger equations, and the stabilized
bi-conjugate gradient method (BI-CGSTAB). While the FFT-based fast application of integral
operators and the BI-CGSTAB for the solution of linear systems are fairly standard, a large
part of this paper is devoted to constructing a class of high-order quadrature formulae
applicable to a wide range of singular functions in two and three dimensions; these are
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1. Introduction

Forward scattering has been a remarkably active subject of research for the past several decades (see e.g. [2,3]). The most
straightforward method for the solution of a forward scattering problem is to discretize the underlying PDEs directly, replace
the derivatives with finite differences, and solve numerically the resulting system of linear-algebraic equations. However,
discretization of differential equations leads to matrices with high condition-numbers, with the attendant loss of accuracy,
deterioration in the performance of iterative methods, etc. Another approach is to convert the underlying PDEs into integral
equations of the second kind (such as the Lippmann—Schwinger equation), discretize the latter via appropriate quadrature
formulae, and deal numerically with the resulting linear systems. This paper focuses on the problem of discretization; we
construct a class of high-order quadrature formulae applicable to the Lippmann—Schwinger equation in two dimensions.
Our techniques generalize straightforwardly to three dimensions.

1.1. Statement of the problem

The forward scattering problem is the problem of determining the field scattered from a scattering structure, given the
parameters of an incident field. In this section, we formulate the two-dimensional forward scattering problem for the Helm-
holtz equation, and derive the corresponding Lippmann—Schwinger equation.
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The forward scattering problem we investigate arises from the time—domain wave equation

2
%‘/’(va) = (x)- VA(x, 1), (1)

where y/(x, t) is the value of the scalar field at a point x at time ¢, and c(x) is the local speed of wave propagation at a point x. In
order to solve (1), we start with the ansatz

l//(X, t) = lpk(x)eikcrj[ﬁ (2)

where k is a complex number whose imaginary part is non-negative, and ¢ is the speed of wave propagation outside of the
scattering structure. Substituting (2) into (1), we obtain

(V2 + KW (x) = KV (X)) (x), (3)
where
Co 2

Eq. (3) is the well-known Helmholtz equation, and the operator (V2 + k?) is known as the Helmholtz operator. For any point
x outside the scattering object, c(x) = ¢o; therefore, V(x) = 0 outside the scattering object. We represent the field y(x) at a
point x as a sum of two parts: the incident field y}'(x) and the scattered field * (x), i.e.,

Yi®) = U5 (0) + 95 (). ()
The incident field satisfies the homogeneous Helmholtz equation

(V2 + )00 = 0 (6)
in some open region in R? containing the scatterer; the scattered field satisfies the Sommerfeld radiation condition

tim () i) o, 7

where i = v/—1 is the imaginary unit. Combining Eqgs. (3), (5), and (6), we obtain the equation for the scattered field
(V2 + kW™ (%) = K VU™ () = KV Py (x). (8)

In this paper, we view Eq. (8) with y{** satisfying the Sommerfeld condition (7) as the principal formulation of the forward
scattering problem. The following standard approach to the numerical solution of (8) converts (8) into the well-known Lipp-
mann—Schwinger equation, which is an integral equation of the second kind (see, for example, [4]):

Convolving (8) with a Green’s function G, satisfying

(V2 + K)Gel(x,y) = d(x - y), 9)
where ¢ is the Dirac delta function, we obtain
B0 K [ Glx gV iy = [ G Voo, (10)

which is an integral equation of the second kind; in (10) above, D denotes the region in space where the scatterer is located.
As is well-known, in two dimensions, the Green’s function G(x,y) satisfying the condition (7) is

Gelx.y) = — g Holklix ~¥1), an

where Hy(k||x — y||) is the Hankel function of the first kind of order zero, and ||x — y| is the Euclidean norm of x — y. A large
part of this paper is devoted to the construction of accurate discretizations of the operator L : L*(D) — L?(D) defined by the
formula

L) = / Ge(%, YV )W (y)dy. (12)

1.2. Overview

A number of algorithms exist for the modeling of acoustic scattering; since we are interested in frequency-domain results,
we have concentrated on frequency-domain (as opposed to time—domain) models. The usual approach to such problems is
to convert the scattering problem into a Lippmann—Schwinger equation, and solve the latter iteratively (integral equations
of the second kind are much more amenable to iterative techniques than the straightforward discretizations of the under-
lying partial differential equations (PDEs)). In addition, the use of the Lippmann—Schwinger equation obviates the need to
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impose the radiation (Sommerfeld) condition at the boundary of the grid, since the “background” Green'’s function (11) im-
poses the Sommerfeld condition automatically.

Historically, there have been two problems associated with the numerical use of integral equations in scattering calcu-
lations. First, the kernels of Lippmann—Schwinger equations are dense, except when the background is extremely attenuat-
ing; since iterative techniques require applications of the matrices of the discretized integral operator to a sequence of
recursively generated vectors, the cost of the procedure is prohibitive, except for extremely small-scale problems. This dif-
ficulty was overcome almost 40 years ago via the observation that the free-space Green’s function for the Helmholtz equa-
tion is translation invariant; appropriately chosen discretizations of Lippmann—Schwinger equations result in Toeplitz
matrices, and the latter can be rapidly applied to arbitrary vectors via the fast Fourier transform (FFT), resulting in algorithms
with CPU time requirements proportional to N log(N), with N being the number of nodes in the discretization of the problem.
Various forms of this approach have been widely used in electrical engineering and other fields, under the name “k-space”
methods; some of the existing codes are quite fast, even for discretizations involving hundreds of millions of nodes. How-
ever, the resulting solvers for the underlying PDEs are usually not very accurate, due to the problem discussed in the follow-
ing paragraph.

The second difficulty associated with numerical use of Lippmann—Schwinger equations is the singular character of the
Green’s function for the Helmholtz equation; in two dimensions, the principal term of the singularity is of the form
log(r), and in three dimensions, it is of the form 1/r, where r is the distance to the origin. As a result, kernels of
Lippmann—Schwinger equations are singular; the singularities are located on the diagonal, and in two dimensions are of
the form

K(x,y) = log(]x — y|) + P(x,y) - log(]x — ¥|) + Q(x.¥) (13)

with P, Q being two smooth functions, such that P(x,x) = 0 for all x € R?; the corresponding form in three dimensions is

1 1

Kxy) = =g+ PRy =g + QX9 (14)
Importantly, we usually do not have access to each of the functions P, Q separately, but can only evaluate the whole kernel K
given a pair of points (x,y). Therefore, standard integration techniques (such as product integration, etc.) can not be used
efficiently. The standard procedure in the literature (referred to as “singularity extraction”) is to subtract the principal sin-
gularity and treat it analytically, and apply the trapezoidal quadrature rule to the remaining function. Since the latter is not
smooth (having infinite derivatives when x = y), the procedure converges slowly, normally behaving like a second-order
scheme.

We introduce a class of quadrature formulae for functions of the form (13) in two dimensions; similar techniques would
yield quadrature formulae for functions of the form (14) in three dimensions. Our approach is related to Ewald summation
[5], and leads to quadratures that can be viewed as a version of the corrected trapezoidal rule; the approach is easily com-
bined with the FFT to obtain fast algorithms. Our quadratures can be viewed as a special case of those constructed in [11],
and are extensions of those in [6]. While in principle corrections of arbitrarily high-order could be constructed, in practice
both the complexity of the construction and the number of corrections grow rapidly with the order. We have designed
corrections of orders approximately 4, 6, 8, and 10; they require 1, 5, 13, and 25 corrected nodes, respectively. (We say
“approximately” since we prove that the quadrature errors are O((log(1/h))*h*), O((log(1/h))*h®), O((log(1/h))*h®), and
O((log(l/h))zhm) as the discretization step length h approaches zero.)

This paper is organized as follows. In Section 2, we summarize several well-known mathematical facts to be used in the
paper. In Section 3, we introduce analytical tools to be used in the construction of the algorithm. Section 4 describes the algo-
rithm in detail, and contains a complexity analysis. In Section 5, several numerical examples are used to illustrate the per-
formance of the algorithm. Finally, Section 6 contains generalizations and conclusions.

2. Analytical preliminaries

In this section, we summarize several well-known mathematical facts to be used in the sections below. All of these are
either well-known or easily derived from well-known results.

2.1. Notation

We denote the upper half of the complex plane (not including the real line) by C*, that is,
C"={zeC:Imz> 0}. (15)

For any non-negative integer k and subset D of the two-dimensional plane R?, we write ¢ € C¥(D) to mean that ¢ is a function
on D having continuous derivatives of all orders < k at every point in the interior of D. (The order of a two-dimensional deriv-
ative is the sum of the orders of the constituent partial derivatives.)

For any integer N > 1, the two-dimensional discrete Fourier transform #" is a mapping converting a two-dimensional
complex sequence a = {aj;,}, ji;,j, = —N,...,N, into another two-dimensional complex sequence A = {Ai,}, ki,k» =
—N,...,N, defined by the formula
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N N
__2m kj 2mi k]
Ak1’<z = E E aj,j,e N+ U1 T aN+T) 202 | (16)

=N =N

It is easily verified that the inverse (#V)™" of the mapping #" is given by the formula

B 1 N N omi i 2m g i
(7)), D Aeinih gatiniel, (17)

=0, = - 12
hik " (2N+1) k;N ky—N

withj; = -N,...,N,j, =-N,...,N.

For the Helmholtz equation
V2 + k¢ =0 (18)

in two dimensions, where k is a complex number such that Im(k) > 0, the potential ¢ at a point x produced by a unit point
source at X is given by the formula

)

$0 =~ gHolklx — 1), (19

where Hj is the Hankel function of the first kind of order zero, and ||x — Xo|| is the Euclidean norm of x — xo. The well-known
Sommerfeld formula states that

= 1 / L eIV iy (20)
T Jw VI = 2

forany k € C*, r,x,y > 0, and r = /x2 + y2 (see, for example, [9]).
Finally, we will need the elementary identity

ngj fnzgk Z(j}ﬁ—l* (Z&) (21)

valid for two arbitrary finite sequences {f;}, j=0,1,2,...,n,{g;}, j = 0,1,2,...,n. By analogy with integration by parts, (21)
is normally called summation by parts.

2.2. Toeplitz convolution

This section introduces two-dimensional Toeplitz convolutions and a procedure for the calculation of two-dimensional
Toeplitz convolutions via the two-dimensional discrete Fourier transform.

The Toeplitz convolution axb of finite two-dimensional complex sequences a = {a;j}, j;,j =—N,...,N, and
b={bj;,}, j1,j» = —2N,...,2N, is defined by the formula

(axDb) klkz Z Z a]1]zbk1 —j1ka=izs (22)

j1==N j=-N

where ki,k; = —N, ..., N. The well-known convolution theorem states that the Toeplitz convolution a b is equal to the in-
verse Fourier transform of the product of the Fourier transforms of @’ and b, where a' is the two-dimensional sequence ob-
tained by padding the two-dimensional sequence a with zeros. In other words,

(@xb)p, = (F2)HFN@) - T2V (0)) i1, (23)

where kq,k; = —N, ..., N, and the coefficients of the two-dimensional complex sequence a’ = {a;;,} iy,ip = —2N,... 2N are
defined by the formulae

a@. —an, (24)

iqiy
when —N < iy,i <N, and
=0 (25)

1112
otherwise.

Remark 2.1. While direct calculation of the Toeplitz convolution (22) leads to a cost of order O(N*) floating-point
operations, which is prohibitive for large-scale problems, application of the FFT to the formula (23) reduces the cost to
O(N? -logN) (see, for example, [1]). In this paper, the FFT is used for the fast calculation of Toeplitz convolutions.
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2.3. Classical quadratures
This section summarizes basic facts about multidimensional quadratures.

Suppose that q is a non-negative integer, a and h are positive real numbers, and f : [—a,a] x [—a,a] — R. We define the
boundary -corrected trapezoidal quadrature T" ag(f) by the formula

= 3" f(ih,jh) - b + Ch (). (26)
(i)eM
where
M={ijez:(ij)# (0,0),-a<ih<a, and —a<jh<a} (27)

and CZ_q (f) is the linear combination of values of fand its derivatives of orders < g on the perimeter of the square [—a, a] x [—a, d
that appears in the two-dimensional Euler—Maclaurin formula (see, for example, Theorem 2.6 of [ 7]). (The order of a derivative
of a two-dimensional function is the sum of the orders of its constituent partial derivatives.) We will not need to know the
particular values of the coefficients in the linear combination Cﬂ_q(f), but only that they involve only positive powers of h,
do not depend on f, and are symmetric about the origin (that is, they do not change when reflected through the origin).

The following lemma is a reformulation of Theorem 2.6 of [7]. The lemma provides a bound on the accuracy of a two-
dimensional Euler—Maclaurin quadrature.

Lemma 2.1. Suppose that q and r are positive integers, a is a positive real number, and f € C"([-a,a] x [—a, a)).
Then, the quadrature TZ‘q defined in (26) satisfies

‘/ /f (x,y)dxdy — T4, () — °f (0,0)| = O(max{h',h"**}) -

for all positive real numbers h < a.
The following lemma is a reformulation of Theorem 6.14 of [7].

Lemma 2.2. Suppose that | and q are positive integers, a is a positive real number, and ¢ : R?> — R is real-analytic and depends
only on the angular variable in polar coordinates, that is, ¢(cx,cy) = @(x,y) for any real numbers c, x, and y such that c > 0.
Then, the quadrature TZ‘q defined in (26) satisfies

\ [ [ 00432 09)logix? +yidndy — Thy (00 -+ g1x.y)log(x* +57)
= O(max{(log(1/h))*h"** h®*}) (29)

for all positive real numbers h < a.
3. Mathematical apparatus
In this section, we introduce analytical tools to be used in the construction of the algorithms.

3.1. High-order center-corrected trapezoidal quadrature rules for singular functions in two dimensions

For any non-negative integer p and positive real number a, Theorem 3.2 below supplies an approximately (2p + 4)th-or-
der center-corrected quadrature formula on [—a,a] x [—a,da] for the functions of the form

f(xvy) = ¢(X’y) 'S(X’y)v (30)
where ¢ : [-a,a] x [-a,a] — R, and
s(x,y) = 7(x,y) -log(x* +y*) +d(x,) (31)

with y,  being smooth real-valued functions. To prove Theorem 3.2, we will need the following lemma. This lemma bounds
the accuracy of the quadrature defined in (26) when applied to functions of the form x*y'~*s(x,y), where k and I are integers
withk <land > 0.

Lemma 3.1. Suppose that k, I, and p are non-negative integers with k < l and | > 0. Suppose further that a > 0 is a real number,
and s is a function on [—a,a] x [—a, a] with a possible logarithmic singularity at (0,0), i.e., of the form (31), with y and ¢ in (31)
being | + 4 times continuously differentiable.

Then,

\ / /xy Ks(x,y)dxdy — T, (¢y'¥s)| = O(max{(log(1/h))*h"? h>**}) (32)

for all positive real numbers h < a, where T" 2t

1 is defined in (26).
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Proof. The two-dimensional Euler—Maclaurin formula (28) allows us to assume without loss of generality that (0, 0)>=0 and

s(x,y) = 7(x,y) -log(x* + y*) (33)

in place of (31).
Using the Taylor expansion of y at the point (0,0), we obtain

7(%y) = P(x.y) + R(x.y), (34)
where
+3 1 ] o a}
P =33 5 (3 0 0.0, 35)
+4 [+4 1 ; al+4
R(x.y) = l—|—4 i Z ( > ghs WV(Q *x,¥), &%) (36)
with (& (x,¥), & (x,Y)) € [-a,d] x [-a,a], and
8i+j
iy K001 =0 (37)

for all non-negative integers i and j such thati+j <[+ 3.
To simplify notation, we define 1 : R> — R via the formula

Ax,y) = log(®* +y?). (38)
It follows from (34) that

‘/ / (XY *p(x,y)A(x,y))dxdy — Th 4 (XY *y.) ’ ‘/ / (X*y'*P(x,y)A(x, y))dxdy — T}, 1 (X' "P),)'

’/ / VEROGY) 2%, y))dxdy = Togp. (XY "Ri)‘~ (39)

Combining (37) and the fact that R € C"**([—a, a] x [—a, a]) yields that R - 2 € C"**(]—a, d] x [~a, a]). Combining the two-dimen-
sional Euler—Maclaurin formula (28) and the fact that xy'~¥R - 2 € C"**([~a, d] x [—a, a]) yields

‘/ / YRR(X,y) - A(x,y))dxdy — Tu2p+] Xy I<R,;')' — O(max{h'** h?P**}). (40)

Formula (40) provides a bound on the second term in the right-hand side of (39).
To bound the first term in the right-hand side of (39), we use polar coordinates (r, §), observing that

xkylkxiyi=t — Ft cositk (9) sin R (0) = (o), (41)
where ¢(6) = cos*() sin "~ (§). Combining (29) and (41) yields

‘ / / (XY Xy (X, y))dxdy — Th,, 1 (XY KXy 10) | = O(max{(log(1/h))* ™2 ). (42)
Combining (33)—(42) yields (32). O

Theorem 3.2. Suppose that p is a non-negative integer, a is a positive real number, ¢ :|[—a,a] x [-a,a] — R with
¢ € C**®([—a,d] x [~a,a)), and s is a function on [—a, a] x [—a, a] with a possible logarithmic singularity at (0,0), i.e., of the form
(31), with y and ¢ in (31) being 2p +9 times continuously differentiable. Suppose in addition that s(x,y) =s(y,x) and
s(—x,—y) = s(x,y) for any x and y from [—a, a], and

Ugps(®-8) = Tazpa(d-5) + D Tj(ih.jh) (43)

(ij)ew
for any positive real number h < a/p, where T,J i1 - 5) Is defined in (26),
W={ijez:li+jl <pandfi—j| <p}, (44)

and the coefficients ‘cf’- in (43) satisfy the system of linear equations

x’ 1y’. T (1Y s(x,y))dxdy — Th, L (x Ty ! 45
) -/ [ ) o 5) (45)

.

with x; =ih, y; =jh, and (,j) € H, where H={i',j,€Z:{ > 1,j/ > 1, +j <2p+2}, and t} =7} and 7",
(i) ew

_j =1 for all
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Then,
[ [ otey)-stepdedy - Ul 0-5)| = O((log(1 /1)) (46)
for all positive real numbers h < a/p.

Proof. Using the Taylor expansion of ¢ at the point (0, 0), we obtain

o(x,y) =P(x,y) + Q(x,¥) + R(x, ), (47)
where
2p+1 1 ] . 8]
Py =3 3 5 ()4 gy 91001 (48)
2p+5 ] 1 J i 8’
Q(ny) *jzszrz ;ﬁ(l) yl axxayjqqs( ’ )7 (49)
2p+6 2 6 82p+6
R(x.y) = zp T ( pr ) Py (6 00), G ) (50)
with (él (XJ’)véz(X,Y)) € RZ' and
ai+j
XDy k©,0)=0 (51)

for all non-negative integers i and j such thati+j < 2p + 5.
It follows from (47) that

‘// (x,y) - s(x,y))dxdy — Uups(

‘/ / (x,y) - s(x,y))dxdy — UupS(P s)

+‘ / / (Q(x.y) - s(x,y))dxdy — U} ,(Q -5)

[ ] Ry stxypandy - Ul (-5). (52)
—a

First, we derive a bound on the first term in the right-hand side of (52). It follows from the supposition that s(—x, —y) = s(x,y)
for any x and y from [—a, a] that x'y?P+1-is(x,y) changes sign when reflected through the origin fori = 1,2,...,2p + 1, while

(by assumption) t"; ; = ‘E" for all (i,j) € W. Therefore,

/ / (Xy?PH171 s(x,y))dxdy = 0 = Ut (xy?1 ) (53)
fori=1,2,...,2p + 1. Combining (48), (45), and (53) yields
/ / (X,y) - 5(x,y))dxdy — U, (P -5) = 0. (54)

Next, we derive bounds on the second and third terms in the right-hand side of (52). It follows from (43) that

[ [ @ -steynasay - Ui, @-5) < | [ [ @iy sty -1i0Q-9)+| S ri}Q(thh)’ (55)
—a J-a J-a J-a (ij)ew
and
[ [ ey sy sy, k-5) < | [ [ oy steyaidy = ThgyaR-5) +| rg-R(ih,jm'. (56)
—a —a J-a (ij)ew
It follows from (32) that
[yt st ydady = Thoy 669/ -5)| = O(max log(1 /1 % 7)), (57)
whence
[ ] sy  Th 6y 5)| = OC(log(1/)*H*) (58)
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for any integer j > 2p + 2 such thatj < 2p + 5, withi=0,1,...,j. Combining (49) and (58) yields
a a
[ ] (@) -stxydedy - Tho, (@ 5)| = O((log(1/m)H*). (59)
-a J-a

Due to formulae (32) and (45), the coefficients ‘Eg. are no greater than a constant times (log(1 /h))zhz; combining this fact with
(49) yields

> (ih.,fm’ = 0((log(1/h)*h**%). (60)

(ij)ew

Combining (51) and the fact that R € C*">([—a, d] x [—a,a]) yields that R-s € C*™*([—a,a] x [—a,a]). Combining the two-
dimensional Euler—Maclaurin formula (28) and the fact that R-s € C***([—a, a] x [—a, a]) yields

/j [:(R(X7Y) 'S(X,y))dxdy — TZ.2p+1(R -8)| = O(h2p+4). 1)

As mentioned above, the coefficients ‘cg are no greater than a constant times (log(1/h))?h* (due to formulae (32) and (45));
combining this fact with (50) yields

> TiR(ih, jh)

(ij)ew

Finally, combining (52)—(62) yields (46). O

= 0((log(1/h))*h**®). (62)

Remark 3.1. The suppositions of the theorem that s(x,y) = s(y,x) for any x and y from [—a,qd], and that ‘cg = ‘E]l-’,- for any
(i,j) € W, ensure that the number of independent constraints is at most the number of independent variables in the system
of linear Eq. (45), guaranteeing that the system has a solution.

3.2. High-order center-corrected trapezoidal quadratures for the green’s function of the helmholtz equation

The main point of this section is Theorem 3.7, which is the principal analytical tool of this paper. Theorem 3.7 describes an
approximately 10th-order center-corrected trapezoidal quadrature formula for the Hankel function. It can be viewed as a
special case of Theorem 3.2 with p = 3 and s(x,y) = Ho(k+/X? + ¥?), where Hy, is the Hankel function of the first kind of order
0, and k € C*.

In the remainder of this paper, we will be using the following notation. For any k € C* and h > 0, we will define the com-
plex numbers Dy, D1, D,, D3, D4, Ds, via the formulae

Dy = /% /%Ho(kr)dxdy— > Ho(k\/(ph)er(qh)z)-hz, (63)
S0 J—oo )

00 (p.9)#(0.0

D, =/ 7 / Ho(kr)x2dxdy > Ho <k (ph)* + (qh)2> (ph)* -1, (64)
—00 J -0 (p.q)#(0,0)

D, = /x /m Ho(kr)x*dxdy — " Ho (k (ph)* + (qh)2> - (ph)* - 1, (65)
—o0 J -0 (p.q)#(0,0)

D= [ [ Hotkriiyiaxdy — S Hoie/iphy” + (ah)?) - (ohy*a)? B (66)
- - (p.9)#(0,0)

00

Dy = /jo /;: Ho(kr)xdxdy — Z Ho (kW) (ph)® -2, ©7)

v (p.q)#(0.,0)

Ds = /fo /jo Ho(kr)x*y*dxdy — Z Ho <k (ph)? + (qh)2> - (ph)*(qh)? - h. 68)

(p.9)#(0,0)
The following lemma is a simple consequence of the Sommerfeld formula (20).

Lemma 3.3. Forany ke C*, r,x,y > 0, and r = \/x2 + )2,

Ho(kr) = % / \/% PR VIP=2-0x | ei.g.(\/sz;.zﬂ)-yd;” (69)
o Vk* — 2

where 1> = x*> +y?, x,y > 0.
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The following two technical lemmas follow immediately from (69).

Lemma 34. Forany ke C*,anda > 0
a a el% (\/k —X —/) a_q ei<7 (\/k = +/) -1
/ / Ho (kr)dxdy — / RN N (70)
-aJ-a VK =22 1% (vk -2 —A) i-g2. (\/k—/l +/1>
with r = /X2 +y2.

Proof. Substituting (69) into the left-hand side of (70) and changing the order of integration, we obtain

a ra s
Ho(kr)dxdy = 4 / / Ho(kr)dxdy = — / / Vid-2-i)xgy . / e F(Vie-i2+i)y g
[ [ Hotiriddy - o(kr)dxdy N [ # (2 )gy
e,xx_.( K2 ,2,,) a_q o (\/ﬁw) -1
\/ EYERIY (Vie—22-2) i3 (VIE-72+7)

N
"’|ﬁ\

d.. O (71)

Lemma 3.5. For any k € C*, integern > 1, and a > 0,

> 3 Hy (lq/ (PhY+ @) - (72)

p=-n q=-n

/ \/7 (e'v‘z—%(\/iz;):h—l 2

2
ei»?-(\/ﬁ%)-a -1 1 1 ei_vT'_( kz—).2+/‘.)-a & 73
. ei-%ﬁ.(\/szihz).h 1 2 2 (73)
with
h=a/n, (74)

and f,, equals 1 in the interior of the (2n + 1) x (2n + 1) square, equals } in the interior of an edge, and equals } on the corners of
the square.

Proof. The trapezoidal sum (72) over the domain [—a, a] x [—a, a] is equal to four times the trapezoidal sum over the domain
[0,d] x [0,a]. In other words,

pi: qi: Ho (Im/(ph)z + (qh)2> h =4 E; :HO (lm/(ph)2 + (qh)2> hE B, (75)
=—n q=—n p=0 gq=

where f,, equals 1 in the interior of the (n + 1) x (n + 1) square, equals 1 in the interior of an edge, and equals ; on the cor-
ners of the square. Substituting (69) into (75), and exchanging the order of integration and summation, we obtain

) ZHo(k (ph>2+<qh>2)~h2~ﬁpq (76)

p=—n g=—n
(iei-?(\/ﬂz)m 1+€7 (2” - ”)”)

S

iY2 (\I2—)247).
Ze %5 k2 /2+/ qh 1 + e' 22 ( =72+ ) a d; (77)
2
/ e (Vie-2-1)a _q 1 16132( @2 )a
v/ ei#-(\/k AL 1 2 2
eiv\z_/f.(\/lﬁ,,ibri)-a ~1 1 1 ei%( sz;vzﬁ)'a & O (78)
ei-@»(\/kkz?n)-h 1 2 2 '

Remark 3.2. As a — oo, the exponential terms e'>" Z(V-i2si)a in (70) and (73) tend to zero; this fact will be used in Lemma
3.6 below.
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The following lemma supplies an analytical form for the difference

/_OO /_m (Xi’l}/j’lHo (k\/xz +y2>)dxdy - (p,q)z#;u()) <(ph)i71(qh)j71Ho (k (ph)* + (qh)2>> - (79)
withi=1,j=1,keC".

Remark 3.3. (79) is the right-hand side of (45) in the limit as a — oo (after all, the integrand in (79) decays exponentially at
infinity with k € C*), and thus is directly used in the calculation of coefficients rh Direct numerical subtraction of the
integral and the sum in (79) loses accuracy because of cancellation errors, especially when i, j are relatively large. Lemma 3.6
below and Lemmas 6.1—6.5 in Appendix A provide analytical formulae for (79) with (i,j) = {(1,1),(3,1),(5,1),(3,3),
(7,1),(5,3)}, i.e., for Dy—Ds defined by (63)—(68), so that cancellation errors are reduced.

Lemma 3.6. For any k € C* and h > 0,

Dy = / : [ :Ho(kr)dxdy— Z Ho<k (ph)2+(qh)2>~h2

1 h2 eiof111+ei12h 30
/ N w) (i) 2 (eh —T)(ePh — 1) (80)
/ (%—%)h“m 2y +i \/,lh —¥2) +V1Ys o
) VIR 2 (iotg) (i) (1 +%1) (1 + X2) ’ (81)
where the complex numbers X1, X2, Y1, ¥, 1, Z2 are defined by the formulae
_enh 1 X (ih)" el & (ioh)"
X =k _“nz(nﬂ)" X2 = ih _1*;(n+1)1’ (82)
- iO{]hi X (ioclh)” . l'azhi - (ioczh)”
yl_’“_T_;(nH)r yz_xz_T_;(nH)!’ (83)
B (ih)? & (iogh)" B (iozh)? & (iozh)"
hA=h-g *;(nﬂ)w A L *;(nﬂ)' (84)

and
r= Ve 4y, (85)
o :g(\/k2 — 2 7/1), o :?(\/kz f}.2+ﬂ.>. (86)

Proof. Substituting (69) into

> Ho<k (ph>2+<qh>2)~h2, (87)
.0)

(P.9)#(0.0

and exchanging the order of integration and summation, we obtain

2 2\ 2 4 < d2 h® et 1 emh 1 R
(p‘q);0.0) Hyg <k (ph)” + (qh) ) -h ). m (Z eimh _ 1 eih — 1 4
h2 eiih | pitzh
\/EZ—_—[ 2 (emh —T)(elh — 1)

Now, (80) follows immediately from the combination of (88), (70), and Remark 3.2. Substituting (82) into the expression in
parentheses in (80), we obtain

(88)

1 n emhgeteh 11 24ionh(1+xp) +ionh(1+ %))
(i) (i) 2 (eh —T1)(efeh — 1)~ (ioy)(ioy) 2 (i) (ioa)(1 +%1)(1 + X2)

7)(1+x2+x1x2—%ioclh(1+x])—%ioc1h(1+x])

(o) (i0t2) (1 + x1)(1 + x2) ‘

Finally, (81) follows from the combination of (82), (83), (84) and (89). O

(89)
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Remark 3.4. Introducing the notation z = £ in (80), we rewrite Dy in the form
Do = / / Ho(kr)dxdy — > Ho <k (ph)* + (qh)2> -
oo T ( )

p.a)#(0,0
4h2 0 dz 1 eivzi(\/lfzzfz)kh +ei§(\/l—zz+z)kh
T ) V122 \ (22 - D(kh)? 2(ei§(\/l—z2—z)kh _ 1)(ei‘/77(\/1—22+z)kh _1) '

(90)

Thus, Dy is entirely determined by k and h, and is of the form h? times a function of k - h. Similarly, D; is of the form h* times a
function of k - h; D, and D3 are of the form h® times functions of k - h; D4 and Ds are of the form h® times functions of k - h. In
other words, except for the multiplicative factors (h*, h*, h®, or h®), Dy—Ds depend only on the product k - h. Fig. 4 and Tables
5,6 in Appendix B provide plots and several representative numerical values of the functions 2%, %, 2, %, %, % for k - h € [0, 1].
Remark 3.5. Even when Lemmas 6.1—6.5 are used, a certain loss of accuracy in the calculation of D;—Ds is encountered (see
Remark 3.3 above). Thus, evaluating Dy in double precision, one obtains roughly 13 digits; for D; one gets 9 digits, and D,, D3,
D4, Ds yield even fewer digits. In our computations, we utilized extended (complex *32) precision to precompute the coef-
ficients Do—Ds for values of kh at appropriately chosen nodes on the boundary of the square Q = [0, 1] x [0, 1] in the complex
plane, and used Lagrange interpolation to evaluate Dy—Ds for arbitrary points in Q to 13 digits (see [8] for a detailed descrip-
tion of the technique). Thus, in all of our numerical experiments reported in Section 5 below, the coefficients Dy—Ds were
obtained by interpolation, rather than computed “from scratch”.

Now, we are ready to formulate Theorem 3.7, which is the principal analytical tool of this paper (together with Lemmas
6.6—6.8). Theorem 3.7 describes an approximately 10th-order center-corrected quadrature formula for the Green’s function
for the Helmholtz equation in two dimensions; this theorem is a special case of the high-order center-corrected trapezoidal
rule for singular functions in two dimensions (see Theorem 3.2) with p = 3, and s(x,y) = Ho (Ia/x2 +y?). Approximately
fourth-order, sixth-order, and eighth-order center-corrected quadratures are similar and are listed in Appéndix C (see Lem-
mas 6.6—6.8). All the proofs are quite similar to that of Theorem 3.2, and are omitted.

Theorem 3.7. Suppose that a is a positive real number, and ¢ : R> — C is a function such that ¢ € C'*(R x R) and ¢ is zero
outside the square [—a, a] x [—a,al.
Then, for any k € C™,

a a
[ [ ot Ho(k/A ) ddy — Ul Ho)| = O(tog1/m)"") (91)
for all positive real numbers h < a/p.
In (91),
Uls(¢-Ho) = Ti(¢- Ho) + Y Tho(ph, qh), (92)
D.qeS
where
S={p.qeZ:|p+q|<3andp—q| <3}, (93)
Tho-Ho) = 5> (@(ph.gh)-Ho(ky/(oh" + (ahy?)) I, (94)
(p.9)#(0.0)
and
49D, 7D, 3D; 1D; 1D
h _p,_39D1 7D, 3Ds 1Ds 1Ds
o =Poqg 2 T T I8 2 ®3)
3D, 13D, 19D; 1D, 7D
ho o _oh _3D1 13D 19Ds 1Dy 7 Ds
B0~ %0 T Tag T 2a A8 240 (96)
3D, 1D, 1D; 1D; 1D
ho_gh 3D 1D 1Ds 1 Ds 1Ds
T20 = T2 = 740 12 Y12 oA 1208 24 S ®7)
1D, 1D, 10D
h _h o - 21 - Z2, - 4
Fa0 = %0 T 180 12 T T4d yt 720 15 ©8)
n _5Ds 1Ds (99)
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1D 1D
Ui =Tou =25 7" 8 15 (100)
where Dy—Ds are defined in formulae (63)—(68).

Remark 3.6. For simplicity, we assume here that the function ¢ is zero outside the square [—a, a] x [—a, a]. Thus, the integral
and the sum on the square [-a, d] x [—a, a] are identical to those in R%. This simplification allows the direct use of the ana-
lytical formulae for Dy—Ds (see Lemma 3.6 above and Lemmas 6.1—6.5 in Appendix A).

Remark 3.7. Theorem 3.7 is valid in the limit when k is real-valued, too, as seen in the numerical examples of Section 5.

Remark 3.8. Combining Remark 3.4 with the definitions (95)—(100), we observe that each of the coefficients qu in
(95)—(100) has the form h?* times a function of k - h; we will refer to the coefficients rgq as correction coefficients.

Remark 3.9. The set S defined in (93) contains 25 pairs of integers (p, q); in other words, corrections at 25 points around the
singularity are required to construct a nearly 10th-order quadrature formula (see Fig. 1). In general, for any integer p > O,
2p? + 2p + 1 correction nodes are needed to obtain a quadrature of order approximately 2p + 4.

3.3. Fast numerical application of discretized Lippmann—Schwinger operators

In this section, we combine the approximately 10th-order quadrature formula (91) with the FFT to obtain a fast procedure
for the application of discretizations of the operator (12). We will denote by D the square [—a, a] x [-a, a] in R?, where a is a
positive real number.

Suppose that N is a positive integer, h = a/N, and S is the set defined in (93). Suppose further that the coefficients Tf’liz are
defined in (95)—(100). Then, we define a two-dimensional complex sequence H = {Hj,;,}, i1,i> = —2N,...,2N, as follows:

Hiyi, = Ho <’< (irh)? + (izh)2> Tt /h (101)
when (iy,1;) € S and (iy,1z) # (0,0);

Hoo = Tgo/, (102)
and

Hii, = Ho <k (inh)* + (izh)2> (103)

otherwise. We define ® = {®;;,}, i1,i, = —N, ..., N, to be the complex sequence given by the formula
i1, = ¢(i1h,izh), (104)
where ¢ : R? — C is a function such that ¢ € C'*(R?) and ¢ is zero outside D.

Lemma 3.8. Suppose that N, Iy, I, are integers such that N > 1, —-N <l; < N, —N <, <N, and that a,x,y are real numbers
such thata > 0, —a < x < a, —a < y < a. Suppose further that ¢ : R> — C is a function such that ¢ € C'?(R?) and ¢ is zero outside
the square [—a, a] x [—a, a]. Then, for any k € C*,

[ [ oty Ho(le/ix = -y )y = S5 ST by Hoiyoni| = O(oB(1/)R®). (105

—N<ij<N —N<ip<N

Fig. 1. The 25 correction nodes.
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where h = a/N, x =1;h, y = ,h, the two-dimensional sequence ® = {®,;,}, i1,i> = —N, ..., N is defined in (104), and the two-
dimensional sequence H = {H;,;, }, j;,j, = —2N,...,2N is defined in (101)—(103).

Proof. Due to (91) and (92),

‘//d)xy Ho(k\/x XY+ —y) )dxdy S glih,ish Ho<k\/(llh—i1h)2+(lzh—izh)2>-h2

(iq,ip)el’
— > Tgb(hh+ph, 12h+qh)‘ = 0((log(1/h))*h"), (106)
(p.9)es
where
I'={i1,i € Z: |iy| <N, iz] <N, (ir,i2)#(h, )}, (107)

and S is defined in (93). Now, (105) follows immediately from the combination of (106) and the definitions in (101)—(104).
O

Remark 3.10. Obviously, the sum in the left-hand side of (105) is the Toeplitz convolution of the two-dimensional
sequences @, H, and as such, it can be rapidly calculated via the FFT (see Section 2.2 above). Thus,

3 B, Hiyipy iy = () (T - FH)),,, (108)

—~N<i; <N —-N<ip<N

where —N < I; <N, =N <, <N, and the two-dimensional sequence @ = {®};}, i,j = ,...,2N, is defined by
@;, if lii<N and <

v 0, ifJii>N or [j|> N.

Remark 3.11. For any point x outside the square [—a, a] x [—a, a], integral (12) is approximated via the standard trapezoidal
rule. This approximation is 10th-order convergent, as long as y € C'°(R?).

4. Description of the procedure

This section describes the algorithm of the present paper in some detail. We start with an informal description, follow
with a more detailed one, and finish with a complexity analysis.

4.1. Informal description of the algorithm

Below, we describe an FFT-based approximately 10th-order iterative algorithm for the solution of the Lippmann—Schw-
inger equation

sz/Gk(X,Y)V(Y)l//(Y)dy=k2/Gk(X,Y)V(Y)d)(Y)dy (110)
D D

in two dimensions, where D = [—a, a] x [—a, a], Gy is the Green’s function for the Helmholtz equation in two dimensions, i.e.,
Gk(x,y) = —%-Ho(k|x — y|)), and V(x) denotes the potential at a point x. Here, y(x) and ¢(x) are the scattered and the incident
fields at a point x, respectively.

As discussed in Remark 3.11, once the scattered field y in the domain D is known, the scattered field y outside D can be
calculated via the standard trapezoidal rule applied to (110). Therefore, we focus on obtaining the solution of (110) for x € D.
Obviously, (110) can be written as the linear system

(I - Ay = Ag, (111)

where y is the unknown scattered field in D, ¢ is the given incident field in D, I is the identity operator, and A is the integral
operator in (110). As discussed in Section 3, we use (105) to approximate the integral operator A acting on the functions v, ¢.
With the help of the FFT (see Remark 3.10), we apply the discretized version of A rapidly to arbitrary vectors, and solve the
linear system (111) iteratively. We use one of the most popular iterative solvers, BI-CGSTAB (the stabilized bi-conjugate gra-
dient method) (see [10,12]).

4.2. Detailed description of the algorithm
Comment [Choose principal parameters.]

Set the size of the scattering structure to [—a,d] x [—a,a).
Set the initial position of a point source to (Xo,Y,) to generate the incident field.



R. Duan, V. Rokhlin/Journal of Computational Physics 228 (2009) 2152—2174 2165
Table 1
Tenth-order convergence of the algorithm for Gaussian objects.
k N sizep; N; Erer Niter tepy
25 50 84 6.28 6.33E-06 16 1.2E-01
25 100 82 12.6 6.63E—09 16 5.9E-01
25 200 82 25.1 6.04E—12 16 2.6E+00
25 400 82 50.2 7.25E-13 16 1.1E+01
25 800 84 100 6.32E-13 16 5.5E+01
25 1600 87 201 — 16 2.4E+02
Table 2
Gaussian objects with a fixed number of discretization points per wavelength.
k N Sizeobj N, Erel Niter tcpu
25 50 81 6.28 6.33E-06 14 1.1E-01
50 100 164 6.28 3.80E—-06 20 7.2E-01
100 200 327 6.28 4.44E-06 33 5.2E+00
200 400 64/ 6.28 8.26E—06 61 44E+01
400 800 1282 6.28 1.60E-05 171 6.2E+02
800 1600 2551 6.28 — 891 1.4E+04
Table 3
Tenth-order convergence of the algorithm for the simulated human skull.
k N Sizegp; N; Eral Niter tepy
25 50 84 6.28 1.18E-04 134 1.1E+00
25 100 84 12.6 1.91E-07 133 4.7E+00
25 200 82 25.1 2.05E-10 134 2.1E+01
25 400 82 50.2 4.56E—12 135 9.7E+01
25 800 84 100 7.55E-12 132 4.7E+02
25 1600 84 201 — 132 2.0E+03
Table 4
The simulated human skull with a fixed number of discretization points per wavelength.
k N Sizeop N; e Niter tepy
25 50 84 6.28 1.17E-04 97 7.6E-01
50 100 162 6.28 1.55E-05 165 5.8E+00
100 200 322 6.28 1.03E-05 328 5.2E+01
200 400 642 6.28 1.69E-05 756 5.5E+02
400 800 1284 6.28 2.21E-05 3286 1.2E+04
800 1600 2551 6.28 — 13568 2.1E+05

Fig. 2. The human skull model.
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Choose precision € to be achieved for the iterative solver.

Choose an integer N; set h = §; set the number of nodes discretizing a side of the square to 2N + 1, so that the total num-
ber of nodes in the discretization is N, = (2N + 1)°.

Choose the wave number k for the incident and the scattered fields.

Construct a two-dimensional sequence {V;}, i,j = —N,...,N via the formula V; = V(ih, jh).

Stage 1. Comment [Construct the values of the Green’s function.]

For the user-specified h and k, calculate the correction coefficients Dy, D1, D2, D3, D4, Ds in (63)—(68) via interpolation (see
Remark 3.5).

Construct the two-dimensional sequence H via the formulae (101)—(103) on the square [—2a,2a] x [-2a,2a], and
calculate its Fourier transform using the two-dimensional FFT.

Stage 2. Comment [Construct the right-hand side of the linear system (111).]

For a point source (Xp,Y,), construct a two-dimensional sequence ¢ = {®;}, i,j = —N,...,N for the discretized incident
field on the domain [—a,d] x [-a,a] via the formula (104). Construct the two-dimensional sequence f ={®; V;},
i,j =—N,...,N. (We require V ¢ C”(RZ) and that V vanishes outside [—a,a] x [—a,a], so that V-¢ € Clz(Rz) and V. ¢
vanishes outside [—a,a] x [—a,al.)

As in Remark 3.10, use the two-dimensional FFT to calculate the Toeplitz convolution of the sequences H and f.

Stage 3. Comment [Solve the linear system using iterative solvers.]

Use the iterative solver BI-CGSTAB to solve the linear system (I — A)y = A¢ to the pre-determined precision €. A is applied
to vectors via the FFT, as in Remark 3.10.

The solution produced by BI-CGSTAB is the scattered field y at the N, discretization points in the square [—a, a] x [—a,a].

Stage 4. Comment [Calculate the scattered field at any point in the two-dimensional plane.]

Use interpolation to obtain the scattered field at any arbitrary point in the square [—a, a] x [—a, a], based on the scattered
field at the N, discretization points. As in Remark 3.11, apply the trapezoidal rule to (110) to obtain the scattered field at any
arbitrary point outside the square [—a,a] x [—a,d].

4.3. Complexity analysis

A brief analysis of the complexity of the algorithm is given below.

In Stage 1, the construction of the two-dimensional sequence H costs O(N;), where N; is the total number of discretization
points on the square [—a,d] x [-a,d], i.e,, N; = (2N + 1)%. The two-dimensional FFT costs O(N; log(N,)). Thus, the CPU time
cost of Stage 1 is of the order O(N; log(N,)).

In Stage 2, the construction of the two-dimensional sequences &, f costs O(N;), and the two-dimensional FFT costs
O(N; log(N,)). Thus, the CPU time cost of the Stage 2 is of order O(N; log(N>)).

The CPU time cost of Stage 3 is of order O(Nye. - N, log(N>)), where N, is the number of iterations required by the iterative
solver to produce the pre-determined precision €.

In Stage 4, the CPU time cost of interpolating the field at any point in R? is O(N,).

Summing up the CPU times above, we obtain the time estimate for the algorithm

0.65 -------
0.6 <o
0.55
0.5 - -
0.45 -
0.4 -
0.35 -
03 ——
07 r 025 ——
06 F 0.2 -—------
05 L 0.15 ---o--o-
04 - 0.05 --—-
03 F 0
02 F

Fig. 3. The human skull model viewed from the top.
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T = o(Niter - N2 10g(N>)) + B - Na + 7, (112)

where N, is the total number of discretization points, Ni, is the number of iterations required by the iterative solver to reach
the precision €, and the coefficients o, B, 7 are determined by the computer system, implementation, etc.

The storage (memory) requirements of the algorithm are determined by the total number of discretization points N, and
the number of iterations Ny performed before restarting the iterative solver, and are of the form

S = O(Nis - Ny). (113)
T T T T 0.005
1
0
0 -
-0.005 |
Ak [ e
<<<<<<<<<< 001 F
2r 0.015 F
3 F -0.02
oy 0.025 |
0.03 |
SE T e
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Fig. 4. The real and imaginary parts of%, %}, ‘z—g, ‘Z—g, %, %g. The horizontal axis is k - h. The solid lines are the real parts; the dotted lines are the imaginary parts.
(2) 2 (b) 2t (c) B (d) &2 (e) % (D) 5.
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5. Numerical examples

The algorithm of Section 4 has been implemented in FORTRAN 77 in double precision. In this section, we illustrate the
performance of the scheme as applied to two scattering objects: a Gaussian and a crude model of the human skull. The
experiments were carried out on a 2.8 GHz Pentium D desktop with 2 Gb of RAM and an L2 cache of 1 Mb. The calculations
reported in Tables 1 and 3 were carried out with a requested accuracy of 10~'° for the BI-CGSTAB iterations; the calculations
reported in Tables 2 and 4 were carried out with a requested accuracy of 10~°. We restarted the BI-CGSTAB iterations every 5
steps.

Tables 1—4 illustrate the numerical behavior at arbitrary far-field points of the scattered field generated by the potential V
from (3); the incident field is produced by a single point source. In Tables 1 and 2, we set the potential V(x,y) = e-406**),
Tables 3 and 4 illustrate the numerical behavior of the scattered field generated by a model of the human skull. The skull
model is shown in Figs. 2 and 3. The headings of the tables are as follows:

k is the wave number from (2);

N — the computational grid is N x N, for a total of N* discretization points;

size,p; — the computational grid is (size,;, wavelengths) x (size,;, wavelengths);

N, is the number of discretization points per wavelength;

E. is the average of the relative errors of the solution for the scattered field at twenty randomly chosen far-field points
(the errors are estimated as the relative differences between the computed solution and the solution computed using four
times as many discretization points in the domain [-1, 1] x [-1, 1] containing the scatterer);

Niwr is the number of iterations used by the BI-CGSTAB;

tcpy is the CPU time required in seconds.

The following observations can be made from the tables above, and from more detailed numerical tests performed by the
authors:

1. For smooth scattering objects, the algorithm of Section 4 displays 10th-order convergence; the CPU time required to
obtain the requested precision is proportional to N - N*logN, where N? is the total number of discretization points,
and Ni., is determined by the requested precision, the number of iterations before restarting the iterative solver, and
the size and structure of the scattering objects.

2. For sufficiently smooth scatterers, the relative precision of the solution is determined by the number of discretization
points per wavelength. For example, to obtain 5-digit precision, we need roughly 6.5 points per wavelength. Thus, with
our constraint of 2 GB of RAM, five digits can be obtained for scattering objects as large as 300 wavelengths x 300
wavelengths.

3. The number of iterations increases dramatically as the size of the scattering object increases, as shown in Tables 2, 4.

Table 5

%, Z—J,, %3 for several real values of k - h.

o ; P P

1 1.00E+00 — i - 8.92E-01 4.16E-17 —i-3.35E-02 —2.60E-17 +i-2.16E-02
% 1.00E+00 — i - 1.35E+00 1.12E-16 —i- 3.15E-02 —7.11E-17 +1i-1.91E-02
}T 1.00E+00 — i - 1.79E+00 5.20E-17 —i-3.11E-02 —2.95E-17 +1i-1.85E-02
% 1.00E+00 — i - 2.23E+00 2.60E-17 —i-3.10E-02 —1.56E-17 +i- 1.84E-02
% 1.00E+00 — i - 2.67E+00 9.32E-17 — i - 3.09E-02 —6.95E-17 +i-1.83E-02
317 1.00E+00 — i - 3.11E+00 4.23E-17 —i-3.09E-02 —2.65E-17 +1i-1.83E-02

Table 6

B3, 2%, o for several real values of k- h.

k-h Dy Dy Ds

n® h® 0

g oo ==

—1.47E-17 —i-9.68E-03
3.30E-17 —i- 8.88E-03
1.82E-17 — i - 8.69E-03
9.11E-18 —i- 8.65E-03
2.81E-17 —i- 8.64E-03
1.74E-17 — i - 8.63E-03

2.95E-17 —i-1.95E-02
5.55E-17 —i-1.52E-02
1.56E-17 —i-1.43E-02
1.30E-17 —i-1.41E-02
3.62E-17 —i- 1.40E-02
1.81E-17 — i - 1.40E-02

—3.25E-18 +i-2.56E-03
—7.91E-18 +i-2.10E-03
—3.25E-18 +i- 1.99E-03
—2.17E-18 +i-1.97E-03
—4.04E-18 +i-1.96E-03
—2.58E-18 +i - 1.96E-03
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6. Conclusions

In this paper, we construct an iterative algorithm for the solution of two-dimensional forward scattering problems. The
scheme is based on the combination of high-order quadrature formulae, rapid numerical application of the integral operator
in the Lippmann—Schwinger equation, and the stabilized bi-conjugate gradient method (BI-CGSTAB). As proven above and
illustrated via several numerical examples, the scheme is nearly (2p +4)th (p =0,1,2,3,...) order convergent; the compu-
tational complexity of the algorithm is O(Nj - N? log N), where Ny, is the number of iterations used by the iterative solver,
and N? is the total number of discretization points.

The approach we use for the design of high-order center-corrected quadrature formulae introduced in this paper is not
limited to functions of the form (13) in two dimensions; it is also applicable to functions of the form (14) in three dimen-
sions, for example. Furthermore, the method does not require access to each of the functions P, Q in (13) and (14); it only
requires the evaluation of the whole kernel K given a pair of points (x,y). Quadrature formulae of order higher than 10
can also be constructed, though the derivations become more tedious. Finally, the scheme is easily extended to rectangular
regions of the form [—a, a] x [-b, b], even though this paper discusses only the square region [—a, a] x [—a,a).
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Appendix A. Lemmas 6.1—6.5 below provide analytical formulae for

/: /j (xifly/?lHo (kW))dxdy— 3 <(ph)i—l (qhy 'Ho (k (ph)? + (qh)2)> el (114)

(p.q)#(0,0)

with (i,j) = {(3,1),(5,1),(3,3),(7,1),(5,3)}. The proofs are straightforward, but tedious; we used the software package
Mathematica for help.

Lemma 6.1. For any k € C™ and h > 0,

D, = /x /OC Ho(kr)x*dxdy —

S Hy (k\/(pmz T (th) (ph)? -
)#(0,0)

()
7&/06 di . 2 _g.e"“”’(e"“]“+1)(ei°‘2h+1)
T VIE =72 (i) (ion) 2 (etah —1)°(eih — 1)
4 [~ d; 2 (azh)? , 3. (115)
= : : +3z1 + 20 + 3y; + 5y, (ionh
”[w VIEZ 2 Boa(1+x1)°(1+x2) ( 12 1422 4 3y1 5y (ih)

3 . 3 . 1. 1
+3y,y, + >0 (ioh) + iyz(loc]h) + X3 +3x2% + x3%; — jloczhy2 + joc%h2 (x3 +2x;)

3 1.
+Za1a2h2(x1x2 + X1 +X5) +‘—11a§a2h3(1 +x1)%(1 +x2)>,

where 1, o1, 0o, X1, X2, Y1, Yo, Z1, Z2 are defined by (85), (86), and (82), (83), (84).
Lemma 6.2. For any k € C* and h > 0,

D, = / / Ho(kr)x*dxdy — " Ho (k (ph)* + (qh)2> - (ph)* - W
T YT (p.9)#(0,0)
24 ht . pitih 4 11g2imh 4 11g3imh 4 pdimh giczh 1)

4 [~ di
o /—oc Ny <(iOC1)S(isz) 2 (enh —1)° Cemh 1
4~ d 1 o
T ' - (2(iogh)* 4 (ioxh)” + 5(iay h) (ioph
7] VE T B T (00 k) S it
3

. 20 . . . . 1,. . .
+15 (ioh)* + ?0 (i h)? (io3h)? + g (ioy h) (iozh)® + 5 (i h)*(iazh) + 4%, iy h)*

+ 42—5)(1 (i h)? (ioph) + 2x1 (o h)* (ioh) + 45x3 (i1 h)? + 252 (i h) (it h)

+6x3 (i h)* + 42—5x%(ionh)3(ioc2h) + 3x3 (1o h)* (o2 h) + 15x3 (i h)? + 4% (ioy h)*

+ 12—5x§(ia1h)3(ia2h) 4+ 208 (i h)* (i) + X (i h)* + %x‘]‘(ioclh)“(ioczh)
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+ 175x2(ioclh)3(io<2h) + %xz(ioclh)“(iatzh) + 50%:%, (icry Y2 (iozh)

+ %xlxz(ioclhf(ioczh) + 2x1%, (it h)* (it h) + 25x3 %, (i ) (1o h)

+ ﬁxfxz(ioc]h)3(ioc2h) + 3x3x, (io h)* (ioy h)

5 + Exfxz(ioc] h)? (iozh)

2

%x‘]‘xz(ialh)“(ioczh) + 12w, (icih) + 3025 (io ) (iciah)

+ 40y, (i1 h)? (i h) + 15y, (ot h) (i h)* + 30y, y, (i h) (ioph) — 1200, — 24,
— 180w (ioyh) — 60ws (iog h) — 60w (ioh) — 16024 (it h)? — 90z; (i h) (ioiz )
— 80z, (i1 h)* + 35y, (i h)® — 40y, (i1 h)? (i h) — 130y (ioty h)?

— 180y3(ioyy h) (i h) — 240y3 (ioy h) — 1203 (i h) — 120y% — 30y, (i h)?

+ 23, (io h)* iz h) +

— 180y,y, (i1 h)* — 360y2y, (iah) — 240y3y, — 20z (iayh)* — 24022 — 120212

— 360y3 (iotsh) — 240y3 — 120y (ih) — 240y, y, (ioh) — 240y3y, — 24x] — 120x7x,—24x3X;), (116)
where
lcxl < (iorh (ioph)? &K (o)
wy = ) =25 — = , 117
! ; n+1 24 nz:;(nﬂ)! (117)
3 (iorh x_ (jorh 3 (ioxh)* & (ioxh)"
== 120 ; n+1 2 =W =000 = 2 ne 1) (118)

and 1,0, 0,X1,X2,¥1,Y4, 21,22 are defined by (85), (86) and (82), (83), (84).

Lemma 6.3. For any k € C* and h > 0,

D= [ [ Halkeyasdy— S Ho(ie/iph + @) ) - o2(ahy
0

(p.9)#(0/

4 o0 ) 4 Y .eiotlh(eioqh +1) . eioclh(eiaclh +1)
—00 \/ﬁ iocl 3 iOCz 3 (eileh _ 1)3 (eio‘lh . 1)3
—4
iogh ioh
sz—;z Bod(1+x)°(1+x)° (240( ihy* 240( 2h)’*

3 . 3 . 9
+74 (i h)? + Zzz(lazh)z +5

(iOC1h)(iOCzh)(Zl + 22)

+ EZ1 (iazh)z

15 . 3 . 3 . .
7 + —zz(loc]h)z - §y1 (1oc1h) (ioxh) — —yz(loc]h)(uxzh)2

4 2
9 . 9 . 3 . 3 .
+3uy +3uy + jwz(wﬁ h) + §W1 (ioxh) + jw1 (i h) + jWz(loczh)

9 . . 1 . 1 .
-2 (ioqh) (ioah) (21 + 22) + 322 + 322 + 9212, — 24 (i h)® — jyz(zoczh)3

1 1 9 . . 1 . 1 .
— 3V ioa)? =5 V(o) + 5 (o) (io2h) (Y1, + g (ioh) + 5 a(ienh))
9 . 2. 3. 3 9.5, . 9., 2 3.5,
+§y1(loc1h) (ldzh)+§y1(10€2h) +Zy1(loc1h)(loc2h)+Zy1(lcxzh) +§y1(loc2h)
3 . 3 9 . . 2 9 . 2 9 . 2
+§Yz(10<1h) +§)’z(10<1h)(1052h) +ZY1J’2(W1h) +Z)’1J’z(1“2h)

9 . . 9 .. 9 .. .
+ iyfyz (ioq h) + 9y3y, (ioah) + 3y3y, + Zy% (it h)? + Zy%(wu h)(ios )

9 3,
+9y1y3(ioh) + S yy3(ioah) + 9yiy; + 53 (ioah) + 3y1y;
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1. .
4 (o h)? (1o h) (2% 4 X2 + 2% + 4X1 Xy + 2X2Xy + X5 + 2X1 X3 + X2x3)

+ % Y2 (ioh) +y3 + % ya(ionh) +y3 + gy%(ifxzh) +9y1Y, (i h + ioh)

+ 9%y, + gyﬁ(ioclh) +9y,y2 — %(ioclh)z(iazzh)(x% + 2X1%; 4 X3%7)

_ ;1 (o h) (i02h)? (33 + 2x:1% + x1X3) + 3%3X3 + 3x3%5 + x§x§> , (119)
where 1, oy, 02, X1, X2, Y1, Y2, Z1, Z2, W1, Wa, Uy, U are defined by (85), (86), (82), (83), (84), (117) and (118).

Lemma 6.4. For any k € C* and h > 0,

D4:/:i /;:Ho(kr)xsdxd}/* > H0<km>‘(l’h)6‘h2

(p.9)#(0,0)

720 his emlh+57e2i“1h+302e3i°‘1h+302e4i°‘1h+57e5i“1h+e6i°‘1h eioczh+1> (120)

4 (> di
_%[x /kz—)?. (azaz 2 (eim,h71)7 "eimh _ 1

_g/oc di 1 AsB)
T ) VI Z 32 don(1+x1) (1 +x2) ’

where

A = 60(0i3h)? — 30(iazh)® — 210(iot h) (i h)* — 9(ozh)* — 105(a h) (0ah)?
— 385(at h)? (ozh)* + 37800y? (iory h) + 25200y3 + 7560y? (ioh)
+ 15120y, y, (i1 h) + 15120y2y, + 15120x5 + 5040x5 + 720x] + 25200x}x,
+15120x3x, + 5040x5x, + 720x]x; + 5040u; + 720u; + 12600w, (io; h)
— 360w, (iogh) + 2520w, (i h) + 2520w (i h) — 17220(a1h)221
+ 6300z (o h) (i h) + 12602z, (ot h) (o) — 4620(01 h)*zy + 1512023
+ 2940y, (io;h)* — 6090y, (011 h)? (i h) — 34440y2 (o h)* — 18900y2 (ot h) (a2h)
+ 50400y3 (i1 h) + 12600y (i, h) + 25200y% + 3150y, (o h)?
— 18900y, y, (21 h)* + 37800y2y, (io1 h) + 25200y3y, — 840z, (22h)* + 5040z, 2,
+ 2310y, (ot h)* (i h) + 630y, (ior h) (azh)? + 1260y, y, (01 h) (et h)

(121)

— 63(iah)® — 301 (it h)* (iozh) + (o h)® + % (a1 h) (axh) + % (o1h)® (iozh)

— 2408x; (oyh)* — 3150x; (0t h)? (0 h) — 315x; (iosh)® — 1204x; (i h)* (i h)

+ 61 (o h)® + 3175)(1 (oyh)® (0tzh) + 3x; (011 h)® (iozh) — 63002 (ioy )

+ 1680x3 (01 h)? (i h) — 3612x3 (o h)* — 3150x3 (01 h)? (or2h) — 630x2 (1ot h)®

— 1806x3 (o h)* (iozh) + 15x2 (o1 h)® + 315x3 (o1 h)° (o2 h) + ];xf(oclh)ﬁ(ioczh),
B = —2100x} (i h)* — 2408x3 (o h)* — 1050x3 (01 h)* (012 h) — 630x3 (ioy h)°

— 12043 (it h)* (o h) + 20x3 (0t h)® + 315x3 (001 h)° (aph) + 103 (01 h) (it )

— 602x% (otrh)* — 315x% (i h)® — 301x4 (o h)* (iota h) + 15x% (o1 h)®

315,

+=5 K (o h)°(ozh) + 12—5x;*(oc1h)6(ioc2h) — 63x; (i h)® + 6x3 (041 h)°

63 . 1 .
+ 7x?(oclhf(oczh) + 3% (o h)® (o h) + XS (o1 h)® + jx?(oclh)e(loczh)

— 1050x, (011 h)* (0t2h) — 3015 (0t h)* (it h) +%x2((x1h)5(azh)

+ %xz(oclh)ﬁ(iazh) + 3360x; X, (0t h)* (it h) — 3150x1 X, (0t h)? (0t h)

— 1204x,x, (0t h)* (iozh) + 3175x1x2(oc1h)5(o¢2h) + 3x1%; (0t h) B (0t )
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+ 1680x3x, (ot h)? (it h) — 3150x3x, (ot h)? (02 h) — 1806X3x, (01 h)* (ioiah)
+315x2% (a1 h)° (02 ) +§x§x2(a1 h)® (iotzh) — 1050x3x, (ot h)? (02 h)
— 1204x3x, (00 h)* (o2 h) + 315%3%, (01 h)® (02 h) + 10X x5 (01 h)® (it h)

— 301x8%, (o h)* (i) + 3;—5x‘]‘xz(zx1 hy (osh) + 12—5x;*x2(a1 h) (iosh)

+ 5 0 ) (00h) + 3850 (2h)(oah) + 5 02 ) (). (122)

and where 1, oy, 02, X1, X2, Y1, Yo, Z1, Z2, W1, Wa, Uy, Uy are defined by (85), (86), (82), (83), (84), (117) and (118).

Lemma 6.5. For any k € C* and h > 0,

c-1

2 2\ a2 2
D= [~ [ mtenyady - Y )Ho(k (ph)" + (ah)” ) - oh)*(gh)* b

(p.9)#(0,0

4 00 ] 48 s eml + -llezialh 4 11e3i11h 4 e4ic41h eiaczh . (eioczh + -1) (123)
T /70@ 12 _ 2 ' 0303 o (eixih — 1)5 ’ (eiozh — ])3
4 [ d’. 1
=— . -(C+D),
o VIR =72 0303(1+x1)°(1 +x,)° ( )
5 (oczh)4 + 240u; + 360w, (i h) + 144u, + 360w, (o h) + 360w, (ioh)

+ 72ws (ioh) — 320z, (0t h)* — 540z, (ot h) (czh) — 4802z, (011 h)?

—300z; (o2h )2 — 180z (o1 h) (o h) — 362;(0(211)2 + 4802% + 720212, + 144z§

— 70y, (ih)* — 240y, (0ah)* (i2h) — 210y, (i h) (2h)*

+ 30y, (iah)® — 260y (ot h)* — 1080y2 (ot h) (orzh) — 3603 (0r2h)?

+ 480y3 (iotr h) + 7203 (iozh) + 240y% + 180y, (i h)® + 120y, (i h)* (ioh)

+ 30y, (i h) (0 h)* — 1080y, y, (2t h)* — 1260y, y, (ot h) (o h)

— 180y,y,(02h)* + 2160y2y, (ioh) + 1440y2y, (iozh) + 1440y3y, — 360y3(o; h)?
— 180y3 (o1 h) (02 h) + 1440y, y3 (ion h) + 360y, y3 (ioxh) + 1440y3y2 + 120y3 (i1 h)
+ 240y, y3 + 720y3 (io h) + 480y3 + 720y3 (ioxh) + 1440y, y, (i h) + 1440y2y,
+ 720y, Y, (io2h) + 360y3 (i1 h) + 720y, y3 + 72y3(ioxh) + 48y3 + 48x; + 720x1x,
+ 144x3%, + 1440x3x3 + 720x7x3 + 144x3x3 + 480x3x3 + 480x3x3 + 240X7x5
+48X3%3 — 24y, (iozh)® + 24y2 (azh)? — 3 (i h)* (ioyh) — 15(ioy h)? (ioh)? (124)
+ (orh)*(0i2h)? — 8x1 (o h)* — 135x; (011 h)? (012h) — 100x; (01 h)? (02 h)>

—12x; (o h)* (it h) — 45x; (i1 h)? (i h)? + 4% (o1 h)* () — 90X2 (ioty h)?

— 150x3 (it h)* (i h) — 12x3 (o h)* — 135x2 (o1 h) (02h) — 50%2 (o1 h)* (ai2h)?

— 18x3 (auh)* (it h) — 45x3 (i1 h)? (it h)* + 63 (a1 h)* (o) — 3043 (iot1 h)?

— 8x3(ayh)* — 45x3 (o h)* (03h) — 12x3 (e h)* (1o h) — 153 (iog h)? (it h)

+ 43 (o h)* (o) — 2x% (ot h)* — 3x? (ot h)* (o h) + X2 (ot h)* (a2 h)?

— 45x,(0trh)? (0ih) — 100x, (00 h)? (0 h)? — 3x5 (0t h)* (iozh)

— 30x, (o h)? (iosh)? + 2x5 (0 ) (013h)% + 300x1 X, (0t h)? (0t h)

+ 120x; X5 (o1 h) (0t2h)? — 135x1 %5 (0t h)* (012 1) — 200% %5 (001 h)? (02 h)>

— 12x1 %2 (o h)* (oo h) — 90y X3 (101 )3 (ioezh)? + 8%1%5 (001 h)* (012 h)?

+ 150x2%; (011 h)? (ioyh) — 135x3x5 (o1 h)? (o) — 100%3x5 (01 ) (012 h)?

— 18x2x, (a1 h)* (ioph) — 90X3x, (1o h)? (ioh)? + 12X2%, (011 h)* (02h) %,
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D = —45x3x, (00 h)? (0ph) — 12x3x, (ot h)* (iah) — 30x3x, (it h)> (i0ta h)?
+ 8xX3xy (0 h)* (0h)? — 3x3xy (o h)* (02 h) + 2%, (o1 h)* (o2 1)
+ 60x3 (o h) (0ih)* — 50x3 (03 h)? (0th)* — 15x3 (ioey ) (iotyh)
+ %3 (i h)* (02h)? + 60x;X3 (1ot h) (o2 h)® — 1001 %3 (01 h)? (2 h)? (125)
— 45x,x3 (i1 h)? (o2 h)? + 4% X3 (o h)* (0h)* — 50x2%3 (o h)? (0ah)?
— 45x2x3 (i1 h)? (i h)* + 6x2x3 (o h)* (0h)? — 15x3X3 (001 ) (ioip h)?
+ 4x3x3 (o h)* (oh)? + x3x3 (o1 h)* (o2 h)?,
where 1, a1, 0, X1, X2, Y1, Y2, Z1, Z2, W1, W, Uy, Uy are defined by (85), (86), (82), (83), (84), (117) and (118).

Appendix B. Fig. 4 provides plots of the functions 24, 21, %2, %2, %, & for k- h [0, 1). Tables 5 and 6 prov1de numerical

values of 2 2, h—; %g, ‘;—g, h—g 2 for the values of k - h used in the numerical examples of Section 5. The values of 2 2, h—; %g, ‘;—g, %g, %g
were calculated via interpolation in double precision, as described in Remark 3.5.

Appendix C. Here, we present center-corrected quadrature formulae of orders approximately 4, 6, and 8 for the integral

[ oty o552 ) dxdy. (126)

Lemma 6.6. (~ 4th-order center-corrected quadrature formula) Suppose that a is a positive real number, and ¢ : R> — C is a
function such that ¢ € C](R x R) and ¢ is zero outside the square [—a,d] x [—a, a).
Then, for any k € C™,

[ [ oty Ho(k/ a3 ddy - U, (969) - Ho (kAT 37) )| = Oflog(1 /' (127)

for all positive real numbers h < a/p. In (127),

Us(6(x,) - Ho(kv/X2 7)) = Ta (#x.y) - Ho (kv/® +37) ) + 3 Theh(ph, ah), (128)
p.ges
where
S={p,qeZ:p=0and q=0}, (129)
T8 (¢x.9) - Ho (kv 7)) = (tph.ah) - Ho e/ tphy* + (any*) ) - 2 (130)
(p.9)#(0,0)
and
thy = Do. (131)

Lemma 6.7. (~ 6th-order center-corrected quadrature formula) Suppose that a is a positive real number, and ¢ : R> — C is a
function such that ¢ € C](R x R) and ¢ is zero outside the square [—a,a] x [—a, a).

Then, for any k € C*,
‘/ / $(x,y) - Ho (k\/x2 +y2)dxdy - UZ‘S<¢(x,y) -Hp (k\/xz +y2>>‘ = 0((log(1/h))*h®) (132)

for all positive real numbers h < a/p. In (132),

Ul (6(x.) - Ho(kv/X2 7)) = To (#(x.y) - Ho (kA +32) ) + S thes(ph, ah), (133)
p.ges

where

S={p,qeZ:|p+q/<1and|p—-q| <1} (134)

T (00e9) - Ho(kyAT37)) = 5= (p(ph.am) - Ho (ky/ph)* + ah)*) ) 1, (135)

(p.q)#(0.0)
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and
g0 = Do — 2%, (136)
1D
Tho = Tour :Qh—§~ (137)

Lemma 6.8. (~ 8th-order center-corrected quadrature formula) Suppose that a is a positive real number, and ¢ : R> — C is a
function such that ¢ € C'°(R x R) and ¢ is zero outside the square [—a, a] x [—a, a]. Then, for any k € C*,

‘/ / $(x,) - Ho (k/x 37 ) dxdy — U ($(x,y) - Ho (kv/2® +y2))‘ — 0((log(1/h))*h®) (138)
for all positive real numbers h < a/p. In (138),

U2,3(¢(X7y) -Ho (k\/x2 +y2>) = TZ‘(fb(X,y) “Ho (k\/x2 +y2)) + > Tped(ph,qh), (139)

p.ges

where

S={p,qez:|p+q| <2andp -q| <2}, (140)

Ti(00e9) - Ho(kyA137)) = = ((ph.am) - Ho(ky/ph)* + ah)*) ) 1, (141)

(p.9)#(0,0)
and
5D, 1D, D;
Wo=Do—5 5 +5 4+ (142)
2D, 1D, 1D
T =Tu =32 2 (143)
1D, 1D
1712,0 = Tg,ﬂ =752 hﬁl 74 hfi" (144)
1D;

T i (145)
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